6 research outputs found

    HCT: Hybrid Convnet-Transformer for Parkinson's disease detection and severity prediction from gait

    Full text link
    In this paper, we propose a novel deep learning method based on a new Hybrid ConvNet-Transformer architecture to detect and stage Parkinson's disease (PD) from gait data. We adopt a two-step approach by dividing the problem into two sub-problems. Our Hybrid ConvNet-Transformer model first distinguishes healthy versus parkinsonian patients. If the patient is parkinsonian, a multi-class Hybrid ConvNet-Transformer model determines the Hoehn and Yahr (H&Y) score to assess the PD severity stage. Our hybrid architecture exploits the strengths of both Convolutional Neural Networks (ConvNets) and Transformers to accurately detect PD and determine the severity stage. In particular, we take advantage of ConvNets to capture local patterns and correlations in the data, while we exploit Transformers for handling long-term dependencies in the input signal. We show that our hybrid method achieves superior performance when compared to other state-of-the-art methods, with a PD detection accuracy of 97% and a severity staging accuracy of 87%. Our source code is available at: https://github.com/SafwenNaimiComment: 6 pages, 6 figures, 3 tables, Accepted for publication in IEEE International Conference on Machine Learning and Applications (ICMLA), copyright IEE

    HCT: Hybrid Convnet-Transformer for Parkinson’s disease detection and severity prediction from gait

    Get PDF

    1D-Convolutional transformer for Parkinson disease diagnosis from gait

    Get PDF

    Automating lichen monitoring in ecological studies using instance segmentation of time-lapse images

    Full text link
    Lichens are symbiotic organisms composed of fungi, algae, and/or cyanobacteria that thrive in a variety of environments. They play important roles in carbon and nitrogen cycling, and contribute directly and indirectly to biodiversity. Ecologists typically monitor lichens by using them as indicators to assess air quality and habitat conditions. In particular, epiphytic lichens, which live on trees, are key markers of air quality and environmental health. A new method of monitoring epiphytic lichens involves using time-lapse cameras to gather images of lichen populations. These cameras are used by ecologists in Newfoundland and Labrador to subsequently analyze and manually segment the images to determine lichen thalli condition and change. These methods are time-consuming and susceptible to observer bias. In this work, we aim to automate the monitoring of lichens over extended periods and to estimate their biomass and condition to facilitate the task of ecologists. To accomplish this, our proposed framework uses semantic segmentation with an effective training approach to automate monitoring and biomass estimation of epiphytic lichens on time-lapse images. We show that our method has the potential to significantly improve the accuracy and efficiency of lichen population monitoring, making it a valuable tool for forest ecologists and environmental scientists to evaluate the impact of climate change on Canada's forests. To the best of our knowledge, this is the first time that such an approach has been used to assist ecologists in monitoring and analyzing epiphytic lichens.Comment: 6 pages, 3 Figures, 8 Tables, Accepted for publication in IEEE International Conference on Machine Learning and Applications (ICMLA), copyright IEE
    corecore